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We consider general-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in
the high temperature regiorB&1). Each model is characterized by a single-sitpriori spin probability
distribution taken to be noneven. We state our results in terms of the parametg(s®*)—3(s?)?
—(83H2(s2)™H/((s%— (22— (5°)2(s?)"1), wheres=s—(s), and(s*) denotes thekth moment of the
single-site distribution. Associated with the model is a lattice quantum field theory which is known to contain
a particle of massn~In 8. Assuming(s®)#0 we show that fow>>0, 8 small, there exists a bound state with
mass below the two-particle thresholdn2 For «<<0 bound states do not exist. These results are obtained
using a Bethe-SalpetéBS) equation in the ladder approximation in conjunction with a representation for the
inverse of the two-point function designed to analyze the spectrum below but close. to 2

PACS numbsds): 05.50+q

[. INTRODUCTION AND RESULTS function, and analyzing the CF utilizing a lattice Bethe-
Salpeter equation in the ladder approximation.
In this work we obtain properties of general Here we consider the case of a noneven SSD. One might
d-dimensional lattice ferromagnetic classical spin systemexpect that the relevant parameter d$ but usings=s
with nearest neighbor interactions in the high temperature-(s) in place ofs. However, this is not so. Our basic result
region. Each such system is characterized by a singlesite is that, letting
priori spin probability distribution(SSD. Associated with

these systems is a lattice quantum field theory with Hamil- = (8%)—3(s%)*—(s°)%I(s?) 1.1
tonian energy and field momentum operators living orda ( (sH—(HUs" '

—1)-dimensional sublattice. The Hamiltonian is minus the . o .
logarithm of the transfer matrisee Refs[1,2]). The prop- if >0, andg is sufficiently small then a bound state; exists.
erties are uncovered by a detailed study of the interaction dfOr @<0 there is no spectrum between the one-particle mass
the particles of this underlying field theory. The idea of and the two—p_artlcle threshold._These spectral resu_lts are ob-
studying these systems via the transfer matrix is not new, bugined assuming thgs®)#0 using a ladder approximation
up to now it has only been established that the Iow-lyingOf a Iatt!ce BS equation in conjunction w.|th a representation
isolated dispersion curve. These results imply exponentidhe spectrum close to but below the two-particle spectrum.
decay of correlation function&CF) and the Ornstein-Zernike We assume(?“’);&o_to exclude, in the lowest moment, a
this giving information on the spectrum up to the two- These approximations have proved to be reliable where a
particle threshold, and have consequences for the decay 6pMplete mathematical treatment can be givsee Refs.

CF's. [6-8]).
Previously (see Ref.[5]) we considered even SSD and We give a more precise description of the class of models
found that the Sign of the parameter we treat. We |eS(X) € R, andx= (Xo,)z) € ACZd denote the
spin variable at the site of the finite lattice A. For the
a'=(s"—3(s??, generating  function Z,(J) we take Z,(J)

=[eU9eS®dy(s) and @,s)==,J(x)s(x), and the inter-
where(s¥) denotes théth moment of the single-spin prob- acting actiorS(s) is S(s)=83"s(x)s(y), whereX' denotes
ability distribution, and determines the presence or absendbe sum over the unordered set of nearest neighbor sites
of bound states below the two-particle threshold. We showedix,y}. du(s)=II,e V*)ds(x) and we only consider the
that if «’>0 the dominant interactiofwhich is loca) is  case of noneven SSD, i.&/(s)#V(—s). V(s) is bounded
attractive and a bound state exists, such that there is @nom below and increases at infinity at least quadratically.
energy-momentum spectrum between the one-particle speExpectations of the probability measure
trum and below the two-particle threshold; far >0 the  exgS(s)]du(s)/normalization are denoted by-),. Trun-
spectrum is absent. The results were obtained by establishigited CF’s are given by local derivatives with respeci’'so
a spectral representation for a vacuum subtracted four-poinif In Z,(J) at J=0. By the polymer expansiofsee Ref[4])
the thermodynamic limit 4 —Z%) of the CF’s exist if3 is
sufficiently small. The limiting CF’s are denoted Ky and
*Electronic address: ocarroll@fisica.ufmg.br are translation invariant. The truncated CF’s have exponen-
"Electronic address: rsschor@fisica.ufmg.br tial tree decay.
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We now motivate the method for obtaining these spectralvheres(x) =s(x) —(s(x)) andI'(x,y) is minus the convo-
results in the language of the associated imaginary discretfation inverse of the truncated two-point functids(x,y)
time lattice quantum field theoryQFT). The QFT is con- =(s(x)s(y)), i.e.,
structed in the standard wafsee Refs.[1,2]). Write x
=(Xo,X) € 2% and take thex, direction as the discrete imagi-
nary time. The construction furnishes us with the quantum
mechanical Hilbert spack, the commuting self-adjoint en-

ergy H=0, and the momentum operatoP5 the vacuum We note that(S(x;)S(X,)S(X3))={(s(X1)S(X2)s(x3))", so
vector (), and the time zero local-field operators which wethat the sum in Eq(1.3 converges and for the four-point
denote by3(xX), andXe Z9 1. The CF of the spin variable function

s(x), x=(xq,X) € Z9, is related to the vacuum expectations

2 T(x2)S(zy)=—8y.

zeZ

of the QFT by the Feynman-Ka&K) formula, and the de- (S(X1)S(X2)S(X3)S(X4) ) — (S(X1)S(X2) }(S(X3)S(X4) )
cay rates of the CF are used to obtain spectral information.
The relation of the Hilbert space objects to the CF’s is given —(S(x1)8(x3) ) (S(x2)S(X4)) +(S(X1)S(X4))
\kl)v3i/ththe FK formula, i.e., setting(0)=3§, and x,=(t,X,), X (S(X2)S(X3)) = (S(X1)S(X)S(X3)S(X4)) .
IndeedF will be seen to have a greater than one-particle
tistys...<tp, decay, roughly a two-particle decay, but the price we pay is
that we do not know of a spectral representationFoi.e.,
(Q,gefH(tz*M)eiF;-(iz*il)SgH(t3*t2> we do not know the relation of the decay to the spectrum of
) ) H. What is done is to use another representatiod fawhich
x elP-(Xa=x2) @~ H(tn—th-1)giP-(Xn=Xn-1)g) involvesF, in conjunction with a Bethe-Salpeter equation for
F. Before giving this representation we first point out that the
=(S(X1)S(X2)" -~ S(Xn))- truncated two-point functios(x,y) admits a lattice version

of the Kallen-Lehman representatigsee Refs[2,3]), and

that singularities oB(p), the Fourier transform of, on the
positive imaginanp, axis are points in the-mspectrum. In

terms ofl'(p) = — S(p) ~* this mean that zeros &f(p), with
=(ix,p), andpe Ty_,=[—m,7]% !, are in thee-mspec-

In the even case we can detect the presence of b?“’fﬂjm. Throughout this paper the Fourier transform is defined
states by determining the decay rate of the CF associated.

with the vacuum subtracted states of the form without factors of 2. As T'(p) is an increasing function of
x. T'(p) is infinite for some point between consecutive dis-
3()3(Y)Q— (0,3(%)8(X) Q) Q=F(X,y)Q. Crete zeros.
(R)S(Y) (.30 (X.y) The representation fdr that we use is given in operator
, or in terms of kernels by

One- and two-particle states are generated by

§0Q, NEY)Q.

These states are orthogonal to the one-particle states. Tlff?erm byI'=M+LFL
associated partially truncated CF is, by the FK formula,

HKW=MUJHJLMMMﬁHMM&Mﬂ%&MW)
(S(X1)S(X2)S(X3)S(X4)) — (S(X1)S(X2) )(S(X3)S(X4))

= (F(%i%) 0,6 (%5, %) ), 1.2 Kot
where, denotinds(y1y,Ys) =(s(y1)s(Y2)s(Ys)) ",

1.9

Where XlO: XZO:tla X30: X40:t2, and T:tz_tl. By the
spectral representation ¢f a decay rate inq of less than
2m, wherem is the mass of the one-particle state, signals the.(x;x;x,)= f T(X,y" )Gy x5%4) D (X5x4X1Xo)dy dxzd Xy,
presence of a bound state. If we try the same thing in the odd

case, then one-particle intermediate stawgsich are not or-

thogonal to the two-particle stajesn the right hand side of L' (X3X4,Y)
Eq. (1.2) gives us only a one-particle decay. The way around
this is well known in Euclidean QFT, and is known as Eu- =f D (X3X4X1X5)G(x1xu" )T (U'y)dx;dxsdu’,

clidean subtractiorisee Refs[6,9,10). In our context, in-

stead of the left hand side of E(L.2) we consider the CF where we use an integral notation for lattice sums. The vari-

ous coordinates and sums are restrictedxy=X,p, X3zg

F(X1X2X3X4) = (S(X1)S(X2) S(X3)S(X4)) =X40, Xj0=Xbp, ANd X30=X}o. P(X1XpX3Xs) is minus the

— (5(X1)S(X,) }(S(X3)S(X4) ) matrix inverse ofF consideringF (x;X,X3X4) as a matrix
operator ins/»(A), and a symmetric subspace o%(A)
where A={(x,X;) € Z?%x;0=X,0}; M=T'—LFL’. Equa-
tion (1.4) is the first in a hierarchy of equations to be used in
an analysis of higher points in the spectrum, and versions of
X(s(Y2)s(X3)S(X4)), (1.3 this representation were used in R¢®.9].

+ (s(x1)s(x2)s(y1))I'(y1.,Y2)

Y1y2€Z
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It turns out thaf has roughly a two-particle decaiyt, @, allow us to determine the zeros df(iy,p)=0 for (2
L, andL’ have three-particle decay. This can be shown using_gr)m<X< 2m ande’ >0, thus obtaining our result.
decoupling of hyperplane methodsee Refs[4,9,10). We We now describe the organization of the paper. In Sec. II
give the setup for the method and do some sample calculgge determine the solution of the BS equatitin?) in the
tions in Appendix C. We give an intuitive picture for these |adder approximation. Our spectral results are obtained in
decay rates in terms of cancellation of singularities in thegec. |i1. Concluding remarks are made in Sec. IV. We have
Fourier transform. We denote byn the singularity of included three appendixes. In Appendix A we introduce
I'(ix,p=0) for xy betweenm and the bound state masy, . newly devised lattice relative coordinates and derive the
ForF, a singularity aimis introduced by the subtraction, but Fourier transform of the BS equation. In appendix B we

for the inverse—® there is no singularity and thud has  derive the representation equatigns) for T'(k). We set up
three-particle decay. Fir=I'G®G has a spectral represen- the decoupling of hyperplane scheme, and do sample calcu-
tation, and the singularity o& atmis canceled by the zero |ations for decay of the CF in Appendix C.

of I at m. The singularity ofl” at mis canceled by the zero

of @. ThusL has a three-particle decay, so daes Consid-

eringM=I—LFL’ the subtraction cancels the singularity Il. BETHE-SALPETER EQUATION

of I' atm, thus giving three-particle decay féd. The mo- Here we obtain the BS kernel in the ladder approximation,
mentum space form of Ed1.4) in conjunction with a BS  gnq a representation for the solutién A fact that we use
equation forF will be used to analyze the bound state pmb'throughout is that aB=0 only coincident points of a trun-
lem. All the kernels appearing in E(L.4) are translationally  ¢ated” function contribute as follows from the exponential
invariant. In Appendix A we introduce a newly devised sys-yee decay of a truncated CF. We will consider various ma-
tem of lattice relative coordinatésee Refs1,3]), and show iy operators below and their inverses. For matrix operators
that the Fourier transform of Ed1.4), written in relative M (X1XpX3X4), X10=X20, @aNdXgo= X4, acting ins/,(A), we

coordinates, is given by decompose into a diagonal pat, and a nondiagonal part
M,, i.e., M=My+M, and the inverse is defined by ~*
T(k)=|\~ﬂ(k)+(2w)‘z(d‘1)fI(ﬁ,k)ﬁ(ﬁ,ﬁ,k) =(1+My'M,) M4t the nondiagonal parts will be at
least of orderg.
~, N Also, in what follows we use the moment identities
XL'(g,k)dpddg. (1.5
The BS equation i$=Dy+ DyKF or, in terms of kernels, (8%)=(s®) = 3(s’)(s) + (s)°,

With X10=X20, X30=X40,

(5 =(s") —4(s°)(s) + 6(s°)(s)*~ 3(s)".

F(X1X2X3X4) = D o(X1X2X3X4)
We can write
+J Do(X1X2Y1Y2)K(Y1Y2Y3Ya)

F=D+C
X F(Yy3yaXsXs)dy,dyodysdy,, (1.6
where
where
Do(X1X2X3X4) = (S(X1)S(X3) )(S(X2)S(X4) ) +(S(X1)S(X4)) D (X1X2X3X4) = (S(X1)S(X2)S(X3)S(X4)) = (S(X1)S(X2))
X@X2)§X3)>! X@X3)§X4)>l
and the sums in Eq(1.6) are restricted byio=Y20, Y30
=Y. In Appendix B we show that in momentum space, C(X1X2X3X4):y2y (s(x1)S(X2)s(y1))I'(y1Y2)
conjugate to the relative coordinates for Ef.6), we can 1z
write X (S(Y2)S(X3)S(X4))-
F(p.G,k)=Do(p.q,k) Note thatF can also be written as
+(2m) @ f Do(p.B' KK(p'.G" k) F =(S(X1)S(X2)S(X3)S(X4)) T+ Do+ C
XF(§',G,k)dp’ dg'. (1.7 where

In the ladder approximatioK is local, and Eq(1.7) can be D (X;XoX3X4) = (S{X1)S(X3) }(S(X2)S(X4) ) + (S(X1)S(X4) )
solved forF. All this looks rather formidable, but it turns out

that due to good spatial decay properties of the kernels in X (S(X2)S(X3)).

Egs.(1.5 and(1.7) that only points in the space kernels that

are separated by one unit or less play a dominant role anBxpanding ing we find



PRE 61
Da(XaXoxaxe) = (%) = (s%) 2~ &(s)(s°) + 8(s?)(s)*— 4(s)"
X 6(X3—X1) 8(Xg—X2) 8(X1 —Xp)
+(5%) 8(Xg = X1) (X4~ X) (1= 8(X1— X2))
+0(B)),
I(u,v)=—(s%) t8(u—»),
(S(x1)8(X2)8(X3)) = (S(X1)S(X2)S(X3)) "
=(5) 8(x3— X1) 8(X1 = X) +0(B),
Ca(X1XpXaXs) =(—8%) "1(S%)?8(Xg—X1) 8(X4— X2)
X 8(X1—X2) +0(B),
Dod(X1X2X3X1) = 2(8%)? (X1~ X3) 8(Xo— X4) 8(X1—Xy)

+(5%)28(X; — X3) 8(Xp—X4)
X (1= 68(x1—X%2))+0O(B).
Thus
K=Dgy"'~F *=Dg4 —Fq'+0(8)=Dgg —(Dg+Cqy) ~*
+0(B)
= pS(Xy—X2) 6(X1 = X3) 6(Xz—X4) +0(B)
=K +0(B),
p=(2(s%)%) " H(%) = 3(")*~ (SIS ()~ (57)*
~(EAE) =255,
where we have defined, , the ladder approximation, which
is local, andK  (p,d,k)=p.
We now obtain an approximation for
(9,Ff)=(9,Do(1~(2m) " PKD,) ')
for g and f even functions ofp, i.e., f(p)=f(—p) andk
= (ko.k=&). ForD,f we have
Bof(5)-2(2m)2 | S(ko po.5)S(po.P)po (9
=Go(p, k) f(P). (2.)

ReplacingK by K, , expanding (+ K D) ~?, evaluating
and resuming we find

(g,Ff)= J 9(p)Go(p.K)f(p)dp

p/
1-p’'l

| Go<q,k>f<d>dﬁ,

wherep’=(27) 2@ Yp andl = [Gy(p,k)dp.

+

([ @ores0a)

X (2.2

EXCITATIONS FOR LATTICE FERROMAGNETC . ..

6159

Settingky= (i x,k=0) we now determine the behavior of
I as a function of the spectral paramejeror ¢ where g
=2m-—y. These properties play an important role in the
analysis of the spectrum in Sec. Ill.

The general representation f&p), the Fourier trans-
form of S can be obtained by adapting the work of Refs.
[2—4] to show that

Z(p) f“ dn(a,p)
coshw(P)—cospg costimn@— COSpPg’

S(po,p)=
(2.3

where m=—(2—¢’)InB, du is a positive measure, and
Z(p),w(p) are real analytic irp;m is lower bound for the
spectrum above one particle(p) is the one-particle disper-

sion functionw(p)= w(0)=m. Explicitly,

o(P)=—InB=In(s?)— B2d(s)(5?) " (s°) —2B(d— 1)(S)
d-1

+B(s%)2 ; (1—cosp;) +0(B2),

Z(p)B=(2B)"*+0(1).

Using this representation we can explicitly perform the
integral in Go(p,k). Only the product of the one-particle
terms in EQ.(2.3) can give rise to a singularity iy as the
other terms are analytic iy up to at least—(3—¢"')In 8.
Keeping only these terms and denoting the result hywe
obtain

l,=16(27)% 2me X

f Z(p)* 1

tanhw(p) (e X— e*ZW(p))(eZW(ﬁ) —e )

dp>0,

(2.9

showing the analyticity iny for 0<<Rey<<2m. Furthermore
I, as well asl, is a strictly increasing function of for 0

<x<2m. To see the behavior df, as y12m, we write y

=2m—eg, and using w(p)=m+B<s*>p>+0(B%) we

have, for smallg,

,=2(2m)% %(1—e ®) " Y(s?)2 (2.5

Ill. SPECTRAL RESULTS

Recall that we are looking for zeros df(k) with k
=(ko=ix,k=0), (2—&')m<y<2m, where m~—Ing
and it is convenient to writg =2m—eg, £>0. We consider
the dominant contributions to the terms in Ef.5) for small
B. In what follows we will state spatial decay properties of
M, L, andL’. These properties can be obtained by the de-
coupling of hyperplane metho@ee Refs[4,9,10 and Ap-
pendix Q. For M(k), k is the momentum conjugate to the
relative coordinater=y—x. We denote the partial Fourier
transform in the space variables by We find

M (7o) =(M(0,0)=T'(0,0)—L(000)F(0000L’(000))
+0(B),

7'0:0;
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M(70)=M(080)B+0(B%), M(0gp)=1, |7o|=1;

IM(ro)|<cpiml,  |7o|=2.

Thus, in the sumX_e 00N (7o), the dominant term
0

comes from|7g|=1 and isB coshy~e */B. For L(Xx;X,),
where X10=Xpp, We let d=|X;0—Xpg and find [L(xx;X,)|
<cpB%, d=1 andL(xx;X,)=L(xxX)+0(B), d=0; similar
results held folL" (x3x,4,Y), wherexsg=X,4q. We explain the
d=0 property ofL (xx;X,), referring to the definition in Eq.
(1.4). For B=0, I' and G are nonzero only for coincident
points. To see that only coincident points enter idtpwe
considerF. For 3=0, F only has a diagonal pafttvhich is
not loca). However, if the first two(or last twg points co-
incide then only for all coinciding points wiF have a non-
zero value. This property carries overdo=—F 1. By a

subscript zero we denote the values of kernels at coincident

points. We denoteM(0,0=M,, I'(00)=I;, G(000)
=Gy, F(0000)=F,, ®(0000)=®,, L(000)=L,, and
L'(000)=L/ . Their values will be needed below. We find

Fo(5H) ()= ()%(5%) 1=~ g,
Mo=— (5 1(&") ()X~ ) ),
Lo= (&) ) (54— ()P~ ()X H =L,

In what follows recall that we are assumihg+ 0. Keeping
the dominant terms for the equation we can writék,
=ix,k=0)=T(x)=0, letting F(p,d,k=(ix,0))
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We note thal" goes to infinity as— ¢, which is a remnant

(in this approximation forl') of the infinity thatT must
assume between consecutive zeros, of nmsand of the
bound state mad4.1].

IV. CONCLUDING REMARKS

We have found a simple criterion for the existence of a
bound state for smaf8. The question arises as to the location
and number of bound states whgns not small. Also there
is the analytic problem of whether or not2- m,, admits an
analytic extension irfB8 as is the case fan+In 8. The exis-
tence of weakly bound states in lattice gauge and gauge-
matter modelgstrongly bound states are preseistalso an
open question, and the methods developed here open a way
to treat these problems.

APPENDIX A: REPRESENTATION OF I

We develop a Fourier transform representationIfoFor
x,yeZ4, we write

F(x,y)=M(x,y)+ f L(Xy1Y2) (Y3 — YD F (Y1Y2Y3Ya)

X 8(ya—y3)L' (yayay)dyidy.dysdys, (A1)
where the kernels are translationally invariant. Introduce the
variabler=y—x and the conjugate variableand a bar no-
tation for functions of the relative coordinates.
We let

a=Uos—Uq,

B=uU;—Uz, y=Uz—Uy,

=F(p,d,x) by abuse of notation, the approximate condition@nd defineF, L, andL" by

—&

T(x)=0=Mg+ 3 +<2w)*2<d*“LéJ F(p,d,x)dpdé.

Using Eq.(2.2 with g=f=1 for the last integral we have
the approximate condition

—&

T(x)=0=M + 2
X)=VYU=Nlg 3

+L3

), X=2m-—e.
(3.1

1-p’l

In Eq. (3.2 My may be negative, for example, forsadwith
a small odd part. However, for sma#l the positive second
term will dominateM,. Recalling the properties df i.e.,
positive and strictly increasing i for 0< y<<2m, in Sec. Il
we see that ife<0 thenp’l <0 and there will be no solu-
tion. For >0, and g sufficiently small, -p'1=0 is ap-
proximately 1-p'l;=0 which by Eq.(2.5) has the approxi-
mate solutionsy=—In(1—«a). We denote the solution of 1
—p'1=0 by e, and it is given bys;=e7+0(B). Thus for
e<eq, 1—p'l is negative, and foe neare; we have a

F(a,B,7)=F(0U,—U;=a,Us—U;=a+ y,Us—U;

=atpB+y),

L(B,7)=L(0Uz—Uy=7y,us—U,=B+7), (A2)

L(a,y)=L"(0u— Uy =a,uz=U=y),
which are associated witF(u;u,usu,), L(uyusu,), and

L’ (uqu,us), respectively.
Introduce the variabletsee[11])

§'=Yo=Y1, 7'=Ys~Y3, T =Y1i—=X T'=y—V,
which imply
Yi=7" X1, Yo=§& +y, =& +7'+X,

Ys=Ya—n'=y—7' =7, y,=y-7.

We have the following symmetry propertiels(u,usu,) is
invariant underusz<u,, L'(uju,ug) is invariant under

solution e, of Eq. (3.1). Thus we have a bound state with u;<—u,, and F(u,u,uzu,) is invariant under,«<u, and

massmy,, where

2m—mp=gp=—In(1—a)+O(B).

Ug—U,. Thus forF we have

F(a,8,7)=F(—a,B,y+B)=F(a,— B,y+B). (A3)
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Now, since ysz—Yy,=(y—7"—7')—(&'+7 +x)=y—X
—7'—7"¢'—7', and using the symmetry properffeq.
(A3)], we have
F(y1Yaysys) =F(¢',n' 7= 7' =7 —¢'—7)
:E(_gran,:T_T,_T”),

L(XylyZ):L(g,rT,)i

Thus for Eq.(Al) we have

L' (ysysy)=L'(7n",7").

F(T)zﬁ(r)—f déd7’ drd7'L(E,7)

— -

XF(—&,— 7' ,7—7' = 7)L'(7',7"). (A4

We define the Fourier transform of a functidé(x) with a
conjugate variabl@ with a factore™'P* and no factor of 2.

Taking the Fourier transform of EgA4) and dropping the
bars gives

T(k)=M(k)+(27) 2d-D
><fdﬁddf(ﬁ,k)fz(ﬁ,ﬁ,k)f’(d,k)
which is our desired resulEqg. (1.5)].

APPENDIX B: BS EQUATION

Here we develop a BS equation fBr For F(X;X>X3X4),
X10= X209 @ndXzp=X4q. We have

F(X1X2X3X4) = D(X1XpX3X4)
+f Do(X1X2Y1Y2) 8(Y10— Y20 K(Y1Y2Y3Y4)

X F(Y3YaX3Xa) 6(Y30~ Yao)dy1dY,dysdy,.
(B1)
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F(5.0.K)=Do(p.0K)+(2m) 241 [ dp'daFip.p' k0

xK(p',d" K)Do(d’,B.k),
which is our desired resulEq. (1.7)].

APPENDIX C: DECAY OF CORRELATIONS.
DECOUPLING OF THE HYPERPLANE METHOD

Here, by a sample calculation, we show how the decou-
pling of the hyperplane method is used to obtain a decay of
the CF introduced in Sec.(bee also Refg4,9)). In particu-
lar we obtain the temporal falloff oF and ®. The same
method applies for spatial falloff and far, L', andM.

For the truncated function

Gy, ,(%,y)=(0(x) 7(y)) = (6(x)){n(Y)),

we introduce a duplicate variable representation depending
on the hyperplane decoupling complex parametgssg}
wherew,, replacess for the bonds connecting the=q and
Xo=Qq+1 hyperplanes. The representation is, with=q
<Yo,

Gy, ,(%.y){Wq})

(CD

_ f [0~ 6" 0T m(y)— 7' (V)]

X exp{ > Wo(s(2)s(z+eg)+5'(z+ep))
a.20=q

xXexd S(s)+S(s’)]du(s’)]du(s")/2D, (C2)

whereD is the normalization factor. The primes & and »’
mean functions of the duplicate variables. S(s) is the
action for the remaining bonds. By the polymer expansion
(see Ref[4]) G, , is jointly analytic in{w,} for small|w|,
and equal to Eq(C1) for all w,= 3. From now on we sup-
press the{w,} from the notation ofG, , in Eq. (C2). The
way in which decay is obtained is to show the vanishing of
Gy, , or of w, derivatives atv,=0. From the joint analytic-
ity in {wg} and Cauchy bounds for derivatives, the decay
follows.

As we will be calculatingw, derivatives ofF and®, it is

We emphasize that the kernels are only defined for equalonvenient to have a general formula. Expanding the nu-

times in the first two and last two pOintS. We introduce Vari'merator and denomiator of EmZ) in powers oqu , we
ables as in the even catsee[11]) by find

E=Xo—Xq, T=X3= Xz, &o=n0=0. 2G4 y(x,Y)

N=X4— X3,

Then using a bar for functions of the relative variables, we

=22, {Gys(X,2)Gs y(z+€0,Y)}w,_Wq
have 25=9 q

F(£,7,7)=Do(& 7,7~ f dé'dy'dr'd7"F(£,E,7) " zoz:q, (G a5 (X¥)Coxd o2+ €0.)

XK(=&,— 7', 7= 1 = 7")Do( 7', %,7").
(B2)

+ Gy, s(s(u)— s(ui()(¥:2) Gs(s(i)) —s(uy(s), 2+ €0,Y)

—4G 4 g(s(ii))Os(siiyy, y( Z+ € ,Y)}wq:oW§+ O(Wg),

where we have used thg« X, andXxz«< X, symmetry prop- (€3
(Erti:as ofF, Dy, andK. Denoting the conjugate variables to Wh_,ere Gy, s5i)(X:2) =.<¢(x)§(z)s.(.z+ G)>_<-¢(X)><ZS(Z)S(-Z
& n, Tby B, §, andk, respectively, and taking the Fourier +U0)), etc. For notational simplicity we write they coeffi-
transform of Eq.(B2), gives(dropping the bar cient as, withk=1, 2, and 3,
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Zqu G¢'¢k(x,z)G¢k'¢(z+e0,y). (C4)
0=40,

Specializing to ¢=¢=s, denoting ¢'/dwg by o',
9"l owg|wq=o by dy andGg s by G, we have

49G(x,y) =0, (C53

5G(X,y) = Zq G(x,2)G(z+€g,y)|Wq—o, (C5b)
Zo=

9T (x,y)=0, (C50)

6%F(X,y)= 5x+e0,y (C5d
where we use)l'=1"9gGI', which follows fromI'G=—1.
As the arguments used in obtainiah will occur repeatedly
in the sequel, we give more detail. We have

ar(x,y)=> T(x,u)dG(u,»)T(u,y);

u,v

by the properties of, theu andv sums can be restricted by
Up<p andry>p, which allows us to use EC5b). Lifting
the restrictions and usinfG=—1 we obtain Eq.(C5d).
Equations(C5a), (C5¢), and(C5d) imply the decay

[Yo—Xol 2lyg—xo—1|

. T (x,y)|<cp

|G(X,y)|$cc—l o

We now consider

F¢,¢<x,y)=e¢,w<x,y>+§ Gy (X, V)T (U, )Gg (1Y),
| (c6)

and note that, if¢(or ) is a constant or proportional t§
then F, ,=0. Using Egs.(C3) and (C50, we see that
F¢,.,,(x,y)|wq:o, and for the first derivative we have

(9F¢'¢: (?Gd),l//_l_ ﬂG(ﬁ,SFG(ﬁ,S(?FGS,I//—}_ Gqsysr(?Gsyw(CD

Restricting sums and using E@C3) gives

doF 4, 4(X,Y)

- ZZq Gy s(X,2)Gs y(z+eg,y)
=

+ 2 Gue(x,2)G(z+e0, ) (U,1)Gg y(1,y)

Up,70>4d

+ X

u=q,vp>q

Gqﬁ,s(xl V)(?F(U, V)Gs,z//(vly)

2 Gy} WX 1)G(1,2)8s yizey ), 0

Ug.vp<q

(C8

Thus we have the decay
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2|yp—xg|
|F¢,¢/(XaY)|$C ~r

C

For the second derivative, writing?l'=T"9°GI"+2I'9GT,
we have

I°F 4= °Gy 4+ 9°Gy §Gs y+ Gy L 9°GI'Gs
+G,L#%Gs ,+2G, LIGII Gy
+29G 4 sl Gg y+2G 4 I IGs ,,
+2G, ['9Gs . (C9)

The reason for the splitting @I is that the first line of Eq.
(C9), denoted byR, has a product structure of F's, and the
remaining terms taken together vanish. In more detail, using
Eq. (C3),

R(X,y)lquozk,gzq G¢Y¢k(x,z)G¢kvw(z+eO,y)
+ 2 Gy (X,2)Gy (z+€0,u)T(U,v)
Up>q ' Pk k,s

XGg v+ 2 Gudxn(uu)

uu’ vy’

X quﬁk(ul ’Z)G¢k,s(z+ €0, V) (1,1")Gg ,(V',Y)

+u2 Gy (W (U,9) Gy, (1,2)Gy, |
X (Z+ eO 1y)|wq:0

= k,;q Fo.6(X2)Fg 4(Z1€.Y) |wq:0-
(C10

Only thek=1 term contributes to Eq.C10 and taking¢
=sg(f) and=s9r") we have

2 _
f7oFss(r‘),ss(r")(X,Y) = E ) Fss(F),ss(F’/)(XyZ)Fss(F”),ss(r")
Zozq,r”

X(Z+e01y)|wq:01 (Cll)

and recalling thaF with s's is the same aF with S’s gives

3§F§(F),§(F/)(X,y): 2 Fssin 58 (x.2)
zp=q,r"
XFssssiin(Z1+€0.Y)w =0
(C12

Letting 55 55:)(X,y) denote the negative inverse of
Fssinssi(Xy) and using the properties df , ,(X,y),
namely,F¢,¢(x,y)|quo, anddF, ,(x,y)=0 and Eq.(C12
we obtain

P 55 (% Y) =0, (C13a
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aOcI)S_S(F),E(F’)(X!y):O' (C13b

ToPs sy ssri)(XY) = 67,71 Syt e,y » (C130

which implies the decay

3lyg—%g—1|

|55 557 (X, Y)|<cB? o
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For the second derivative, suppressing indices, denoting

Gssqwy. etc. by Gz, and recalling thatg?I’ =T °GT
+2dI'9Gol", we have

PL=T 3?GI'G3® + I 9°G30D + 'G30°P + 2" 9G I G P

+ 2T 9G 39D + 29T Gzd® + 29T 9GP (C18)

At wy=0 only the first three terms can give a nonzero con-

tribution for xo,<g<y,. Using Eq.(C3), the first two terms

Spatial decay is obtained by using complex coupling paramg¢ Eq. (C18) are, forxo<q<y,
eters associated with separating hyperplanes perpendicular to ’ '
each of the component directions of the spatial coordinates.

Now we considelL, which we write as

Lessn(%Y)= > T(x,»)Ggssi(u,v)DSS(F),SS(F")

u,v,r’

X(v,y), (C19

and note that inb we can replace by s and the same for the

first' s in Ggsg;7), which for simplicity we denote bys;.
For xo=qg=Y, and atw,=0, L(x,y)=0, using Eqs(C4),

(C133, and(C3) for G;. However, to calculate derivatives

and use the derivative formul&qg. (C3)] (s) and hences
cannot appear inp or . Thus we replace the by s in
®5555, and use the decomposition

Gs,ﬁ(?’)(“ v)= [Gs,ss(F’) - Gs,s(s(F’))_ Gs,(s)s(F’)
+ G (sy(s(i)J (U, v),

where the last term is zero. We write=L + R, where

Li(x,y)= 2 T(X,)Gssqi)(U¥) Psgir) s (1Y),
(C15

u,v,r’

R(X,y) =2 [(S(X+F)) Psgir) ssry(%.Y)

H(S(X=T"))Psgrr) s (X—F",y)] (C16)

For xo=<q<Y, and d3L(x,y)=0,

doL(x,y)
= UZ [5x252+e,uGSasiF,)(U-V)
zO=,OF’
XDgqir) sgry(v,Y) +T(X,U)Gg 5(U,2)
X Gg sgi) (21 €0,v)Psgrr) sqry(12Y)]

+ E L(X,u)Gs sy (U, 1) P 1) s

U,V,r'

X(v,y)]

The first two terms indggL sum to zero, and agy®(v,y)
=0 for vo=q we havedyL(x,y)=0.

=0. (C17)

Wq

_ L (X,U)Gg 4i(U,2)F i sq77) (21 €, , ) Py 51y
UOSq,l,Zo=q
V0>q,F,

X(v,y)|Wq=0
and using the properties &, , we can replacep; by ¢,

=sgf") so that the first three terms of E¢C18 sum to
zero. Here we have used E@€139 for 95®.

Turning to R of Eg. (C16), the two terms are equal, as

seen by using the symmetry properfysq;r) sgr)(X,Y)
=Fsqiny,smys(X,Y). As @(x,y)=0 anddP(x,y)=0 for xq
<g<y, and wy=0, we have JR7(x,y)=0, JoRF(X,y)
=0, and

ToRT(X,y) =2 [(S(X+T"))PDsgir) s (X.Y)
r!

+(S(X= ")) P Psqi1) sy (X—F',y) 1 wg
:0,

and using Eq. (C139 gives d3RF(x,y)=2(s(x
+1))dxre,.y - Altogether we have, fory<q<yo,

O%Ls,ss(r‘)(xyy)
= 2<S(X+F)>5x+eo,y+2 z_} 5x,zaGs,ss(F’)

zp=0q,vr

X(z  +ep,v)Psyir) sqi)(V,Y)

+2 X 8,0G(z+eg, v )T(v',u)

zo=q,v' 1’

=0,

Wq

X Gg sqi) (U, 1) Pggiry sgmy VaY)]

s0 thatdiL s sy (X,Y) =0 for xo<q<y,. Thus we have

C|13|C1|2\yo—><ol,

c| BI%| Blc,|3o~x0~2]

lYo—Xo|=1,2

Lssgny(X, V)< .
| s,ss(r)( ay)l |yo_Xo|>3

L', dpL’, anddiL’ are treated in a similar manner.

We now consider M=T'—LFL’. For Xy<q<yj
we have dM(x,y)=0. As JIM(x,y)=(dl—dLFL’
—LdFL'—LFdL')(x,y), we have, forx,<g<yy,—and
upon taking into account the propertieslgfL’, andF, and
their first derivatives aw,=0,
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doM(X,y)=dol'(X,y) =6 .
oM(X,y)=ol'(X,Y) = Oxseqy agM(x,y)=[j; L(X,U)Gs, g, (u Gy, s(Z+ €0, ¥ (1Y)

For M we have 0~

PPM(x,y)=[T3*GT — Lo?FL’ + 2T 9GaT — *LFL’ - W%:q,f HGasen (D Catns

—LF#’L'—2JLJFL'—29LF4L" —2LJFL"]

><(z+eo,v)F(v,y)] =0. (C20

X(X,Y). (C19
Wy

Using the properties of, L', andF, and their first deriva- Thej=1 term cancels the second term, and jtke2,3 terms

tives atw,=0, the last three terms of EQC19) are zero for  can only contribute foky=q or q=y,— 1. We conclude that
Xo<(<Yo. For wy=0 the terms of the second line only 93M(x,y)=0 for x,<q<y,— 1. Thus we have

contribute forxo=q or yo—1=gq. Denoting the first two

terms of Eq.(C19 by ?M®)(x,y), takingx,<q<y,, and IM(xy)|<

using Eq.(C3) for ¢°G and Eq.(C11) for 4°F, we have Y=

c| Blcy|Hoal, lYo—Xo|=1,2
c| BI4Bley oo, y—x|=3.
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