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Excitations for lattice ferromagnetic classical spin systems at high temperature:
Noneven single-spin distributions

Ricardo S. Schor* and Michael O’Carroll†

Departamento de Fı´sica, ICEx, Universidade Federal de Minas Gerais, CP702, CEP30123-970 Belo Horizonte, Minas Gerais, B
~Received 16 November 1999!

We consider generald-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in
the high temperature region (b!1). Each model is characterized by a single-sitea priori spin probability
distribution taken to be noneven. We state our results in terms of the parametera5 (^s̄ 4&23^s̄ 2&2

2^s̄ 3&2^s̄ 2&21)/(^s̄ 4&2^s̄ 2&22^s̄ 3&2^s̄ 2&21) , where s̄5s2^s&, and ^sk& denotes thekth moment of the
single-site distribution. Associated with the model is a lattice quantum field theory which is known to contain
a particle of massm; ln b. Assuming^s̄3&Þ0 we show that fora.0, b small, there exists a bound state with
mass below the two-particle threshold 2m. For a,0 bound states do not exist. These results are obtained
using a Bethe-Salpeter~BS! equation in the ladder approximation in conjunction with a representation for the
inverse of the two-point function designed to analyze the spectrum below but close to 2m.

PACS number~s!: 05.50.1q
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I. INTRODUCTION AND RESULTS

In this work we obtain properties of gener
d-dimensional lattice ferromagnetic classical spin syste
with nearest neighbor interactions in the high temperat
region. Each such system is characterized by a single-sa
priori spin probability distribution~SSD!. Associated with
these systems is a lattice quantum field theory with Ham
tonian energy and field momentum operators living on ad
21)-dimensional sublattice. The Hamiltonian is minus t
logarithm of the transfer matrix~see Refs.@1,2#!. The prop-
erties are uncovered by a detailed study of the interactio
the particles of this underlying field theory. The idea
studying these systems via the transfer matrix is not new,
up to now it has only been established that the low-ly
energy-momentum~e-m! spectrum consists of a particle wit
isolated dispersion curve. These results imply exponen
decay of correlation functions~CF! and the Ornstein-Zernike
behavior of the two-point CF@3,4#. Our results go beyond
this giving information on the spectrum up to the tw
particle threshold, and have consequences for the deca
CF’s.

Previously ~see Ref.@5#! we considered even SSD an
found that the sign of the parameter

a8[^s4&23^s2&2,

where^sk& denotes thekth moment of the single-spin prob
ability distribution, and determines the presence or abse
of bound states below the two-particle threshold. We show
that if a8.0 the dominant interaction~which is local! is
attractive and a bound state exists, such that there is
energy-momentum spectrum between the one-particle s
trum and below the two-particle threshold; fora8.0 the
spectrum is absent. The results were obtained by establis
a spectral representation for a vacuum subtracted four-p
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function, and analyzing the CF utilizing a lattice Beth
Salpeter equation in the ladder approximation.

Here we consider the case of a noneven SSD. One m
expect that the relevant parameter isa8 but using s̄[s
2^s& in place ofs. However, this is not so. Our basic resu
is that, letting

a[
^ s̄ 4&23^s̄2&22^s̄3&2/^s̄2&

^s̄ 4&2^s̄3&2/^s̄2&
, ~1.1!

if a.0, andb is sufficiently small then a bound state exis
For a,0 there is no spectrum between the one-particle m
and the two-particle threshold. These spectral results are
tained assuming that̂s̄3&Þ0 using a ladder approximatio
of a lattice BS equation in conjunction with a representat
for the inverse the two-point function tailored to determi
the spectrum close to but below the two-particle spectru
We assumê s̄3&Þ0 to exclude, in the lowest moment,
noneven SSD obtained by a constant shift of an even S
These approximations have proved to be reliable wher
complete mathematical treatment can be given~see Refs.
@6–8#!.

We give a more precise description of the class of mod
we treat. We lets(x)PR, andx5(x0 ,xY )PL,Zd denote the
spin variable at the sitex of the finite latticeL. For the
generating function ZL(J) we take ZL(J)
5*e(J,s)eS(s)dm(s) and (J,s)5(xJ(x)s(x), and the inter-
acting actionS(s) is S(s)5b(8s(x)s(y), where(8 denotes
the sum over the unordered set of nearest neighbor s
$x,y%. dm(s)5Pxe

2V„s(x)…ds(x) and we only consider the
case of noneven SSD, i.e.,V(s)ÞV(2s). V(s) is bounded
from below and increases at infinity at least quadratica
Expectations of the probability measu
exp@S(s)#dm(s)/normalization are denoted bŷ•&L . Trun-
cated CF’s are given by local derivatives with respect toJ’s
of ln ZL(J) at J50. By the polymer expansion~see Ref.@4#!
the thermodynamic limit (L→Zd) of the CF’s exist ifb is
sufficiently small. The limiting CF’s are denoted by^•& and
are translation invariant. The truncated CF’s have expon
tial tree decay.
6156 ©2000 The American Physical Society
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We now motivate the method for obtaining these spec
results in the language of the associated imaginary disc
time lattice quantum field theory~QFT!. The QFT is con-
structed in the standard way~see Refs.@1,2#!. Write x
5(x0 ,xW )PZd and take thex0 direction as the discrete imag
nary time. The construction furnishes us with the quant
mechanical Hilbert spaceH, the commuting self-adjoint en
ergy H>0, and the momentum operatorsPW , the vacuum
vector V, and the time zero local-field operators which w
denote byŝ(xW ), andxWPZd21. The CF of the spin variable
s(x), x5(x0 ,xW )PZd, is related to the vacuum expectatio
of the QFT by the Feynman-Kac~FK! formula, and the de-
cay rates of the CF are used to obtain spectral informat
The relation of the Hilbert space objects to the CF’s is giv
by the FK formula, i.e., settingŝ(0)5 ŝ, and xk5(tkxW k),
with

t1<t2<...<tn ,

~V,ŝe2H~ t22t1!eiPY •~xY22xY1!ŝe2H~ t32t2!

3eiPY •~xY32x2!...e2H~ tn2tn21!eiPY •~xYn2xYn21!ŝ!

5^s~x1!s~x2!¯S~xn!&.

One- and two-particle states are generated by

ŝ~xW !V, ŝ~xW !ŝ~yW !V.

In the even case we can detect the presence of bo
states by determining the decay rate of the CF associ
with the vacuum subtracted states of the form

ŝ~xY !ŝ~yY !V2~V,ŝ~xY !ŝ~xY !V!V[ f ~xY ,yY !V.

These states are orthogonal to the one-particle states.
associated partially truncated CF is, by the FK formula,

^s~x1!s~x2!s~x3!s~x4!&2^s~x1!s~x2!&^s~x3!s~x4!&

5„f ~xW1xW2!V,e2Hutu f ~xY3 ,xY4!V…, ~1.2!

where x105x205t1 , x305x405t2 , and t5t22t1 . By the
spectral representation ofH a decay rate inutu of less than
2m, wherem is the mass of the one-particle state, signals
presence of a bound state. If we try the same thing in the
case, then one-particle intermediate states~which are not or-
thogonal to the two-particle states! on the right hand side o
Eq. ~1.2! gives us only a one-particle decay. The way arou
this is well known in Euclidean QFT, and is known as E
clidean subtraction~see Refs.@6,9,10#!. In our context, in-
stead of the left hand side of Eq.~1.2! we consider the CF

F~x1x2x3x4!5^s̄~x1!s̄~x2!s̄~x3!s̄~x4!&

2^s̄~x1!s̄~x2!&^s̄~x3!s̄~x4!&

1 (
y1y2PZd

^s̄~x1!s̄~x2!s̄~y1!&G~y1 ,y2!

3^s̄~y2!s̄~x3!s̄~x4!&, ~1.3!
l
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where s̄(x)5s(x)2^s(x)& and G(x,y) is minus the convo-
lution inverse of the truncated two-point functionS(x,y)
5^s̄(x) s̄(y)&, i.e.,

(
zPZd

G~x,z!S~z,y!52dxy .

We note that^s̄(x1) s̄(x2) s̄(x3)&5^s(x1)s(x2)s(x3)&T, so
that the sum in Eq.~1.3! converges and for the four-poin
function

^ s̄~x1!s̄~x2!s̄~x3!s̄~x4!&2^s̄~x1!s̄~x2!&^s̄~x3!s̄~x4!&

2^s̄~x1!s̄~x3!&^s̄~x2!s̄~x4!&1^s̄~x1!s̄~x4!&

3^s̄~x2!s̄~x3!&5^s~x1!s~x2!s~x3!s~x4!&T.

IndeedF will be seen to have a greater than one-parti
decay, roughly a two-particle decay, but the price we pay
that we do not know of a spectral representation forF, i.e.,
we do not know the relation of the decay to the spectrum
H. What is done is to use another representation forG, which
involvesF, in conjunction with a Bethe-Salpeter equation f
F. Before giving this representation we first point out that t
truncated two-point functionS(x,y) admits a lattice version
of the Kallen-Lehman representation~see Refs.@2,3#!, and
that singularities ofS̃(p), the Fourier transform ofS, on the
positive imaginaryp0 axis are points in thee-mspectrum. In
terms ofG̃(p)52S̃(p)21 this mean that zeros ofG̃(p), with
p5( ix,pW ), andpY PTd21[@2p,p#d21, are in thee-mspec-
trum. Throughout this paper the Fourier transform is defin
without factors of 2p. As G̃(p) is an increasing function o
x, G̃(p) is infinite for some point between consecutive d
crete zeros.

The representation forG that we use is given in operato
form by G5M1LFL8, or in terms of kernels by

G~x,y!5M ~x,y!1E L~x;x1x2!F~x1x2x3x4!L8~x3x4 ;y!

3dx1dx2dx3dx4 , ~1.4!

where, denotingG(y1y2y3)[^s(y1)s(y2)s(y3)&T,

L~x;x1x2!5E G~x,y8!G~y8x38x48!F~x38x48x1x2!dy8dx38dx48 ,

L8~x3x4 ,y!

5E F~x3x4x18x28!G~x18x28u8!G~u8y!dx18dx28du8,

where we use an integral notation for lattice sums. The v
ous coordinates and sums are restricted byx105x20, x30

5x40, x108 5x208 , and x308 5x408 . F(x1x2x3x4) is minus the
matrix inverse ofF consideringF(x1x2x3x4) as a matrix
operator insl 2(A), and a symmetric subspace ofl 2(A)
where A5$(x1 ,x2)PZ2d/x105x20%; M5G2LFL8. Equa-
tion ~1.4! is the first in a hierarchy of equations to be used
an analysis of higher points in the spectrum, and version
this representation were used in Refs.@6,9#.
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It turns out thatF has roughly a two-particle decay;M, F,
L, andL8 have three-particle decay. This can be shown us
decoupling of hyperplane methods~see Refs.@4,9,10#!. We
give the setup for the method and do some sample calc
tions in Appendix C. We give an intuitive picture for thes
decay rates in terms of cancellation of singularities in
Fourier transform. We denote bym the singularity of
G̃( ix,pW 5u) for x betweenm and the bound state massmb .
For F, a singularity atm is introduced by the subtraction, bu
for the inverse2F there is no singularity and thusF has
three-particle decay. ForL5GGFG has a spectral represen
tation, and the singularity ofG at m is canceled by the zero
of G at m. The singularity ofG at m is canceled by the zero
of F. ThusL has a three-particle decay, so doesL8. Consid-
ering M5G2LFL8 the subtraction cancels the singulari
of G at m, thus giving three-particle decay forM. The mo-
mentum space form of Eq.~1.4! in conjunction with a BS
equation forF will be used to analyze the bound state pro
lem. All the kernels appearing in Eq.~1.4! are translationally
invariant. In Appendix A we introduce a newly devised sy
tem of lattice relative coordinates~see Refs.@1,3#!, and show
that the Fourier transform of Eq.~1.4!, written in relative
coordinates, is given by

G̃~k!5M̃ ~k!1~2p!22~d21!E L̃~pW ,k!F̃~pW ,qW ,k!

3L̃8~qW ,k!dpW dqW . ~1.5!

The BS equation isF5D01D0KF or, in terms of kernels,
with x105x20, x305x40,

F~x1x2x3x4!5D0~x1x2x3x4!

1E D0~x1x2y1y2!K~y1y2y3y4!

3F~y3y4x3x4!dy1dy2dy3dy4 , ~1.6!

where

D0~x1x2x3x4!5^ s̄~x1!s̄~x3!&^s̄~x2!s̄~x4!&1^s̄~x1!s̄~x4!&

3^s̄~x2!s̄~x3!&,

and the sums in Eq.~1.6! are restricted byy105y20, y30
5y40. In Appendix B we show that in momentum spac
conjugate to the relative coordinates for Eq.~1.6!, we can
write

F̃~pW ,qY ,k!5D̃0~ p̄,q̄,k!

1~2p!2~d21!E D̃0~pW ,pW 8,k!K̃~pW 8,qW 8,k!

3F̃~qW 8,qW ,k!dpW 8 dqW 8. ~1.7!

In the ladder approximationK is local, and Eq.~1.7! can be
solved forF̃. All this looks rather formidable, but it turns ou
that due to good spatial decay properties of the kernel
Eqs.~1.5! and~1.7! that only points in the space kernels th
are separated by one unit or less play a dominant role
g
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allow us to determine the zeros ofG̃( ix,pW )50 for (2
2«8)m,x,2m and«8.0, thus obtaining our result.

We now describe the organization of the paper. In Sec
we determine the solution of the BS equation~1.7! in the
ladder approximation. Our spectral results are obtained
Sec. III. Concluding remarks are made in Sec. IV. We ha
included three appendixes. In Appendix A we introdu
newly devised lattice relative coordinates and derive
Fourier transform of the BS equation. In appendix B w
derive the representation equation~1.5! for G̃(k). We set up
the decoupling of hyperplane scheme, and do sample ca
lations for decay of the CF in Appendix C.

II. BETHE-SALPETER EQUATION

Here we obtain the BS kernel in the ladder approximati
and a representation for the solutionF. A fact that we use
throughout is that atb50 only coincident points of a trun
cated function contribute as follows from the exponent
tree decay of a truncated CF. We will consider various m
trix operators below and their inverses. For matrix operat
M (x1x2x3x4), x105x20, andx305x40, acting insl 2(A), we
decompose into a diagonal partMd and a nondiagonal par
Mn , i.e., M5Md1Mn and the inverse is defined byM 21

5(11Md
21Mn)21Md

21; the nondiagonal parts will be a
least of orderb.

Also, in what follows we use the moment identities

^s̄3&5^s3&23^s2&^s&12^s&3,

^s̄ 4&5^s4&24^s3&^s&16^s2&^s&223^s&4.

We can write

F5D1C

where

D~x1x2x3x4!5^s̄~x1!s̄~x2!s̄~x3!s̄~x4!&2^s̄~x1!s̄~x2!&

3^ s̄~x3!s̄~x4!&,

C~x1x2x3x4!5 (
y1 ,y2

^s̄~x1!s̄~x2!s̄~y1!&G~y1y2!

3^s̄~y2!s̄~x3!s̄~x4!&.

Note thatF can also be written as

F5^s~x1!s~x2!s~x3!s~x4!&T1D01C

where

D~x1x2x3x4!5^s̄~x1!s̄~x3!&^s̄~x2!s̄~x4!&1^ s̄~x1!s̄~x4!&

3^s̄~x2!s̄~x3!&.

Expanding inb we find
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Dd~x1x2x3x4!5~^s4&2^s2&224^s&^s3&18^s2&^s&224^s&4

3d~x32x1!d~x42x2!d~x12x2!

1^s̄2&d~x32x1!d~x42x2!„12d~x12x2!…

10~b!!,

G~u,n!52^s̄2&21d~u2n!,

^s̄~x1!s̄~x2!s̄~x3!&5^s~x1!s~x2!s~x3!&T

5^ s̄3&d~x32x1!d~x12x2!10~b!,

Cd~x1x2x3x4!5^2 s̄2&21^s̄3&2d~x32x1!d~x42x2!

3d~x12x2!10~b!,

Dod~x1x2x3x1!52^s̄2&2d~x12x3!d~x22x4!d~x12x2!

1^ s̄2&2d~x12x3!d~x22x4!

3„12d~x12x2!…1O~b!.

Thus

K5D0
212F215D0d

212Fd
2110~b!5D0d

212~Dd1Cd!21

1O~b!

5rd~x12x2!d~x12x3!d~x22x4!10~b!

[KL1O~b!,

r5~2^s̄2&2!21~^s̄ 4&23^s̄2&22^s̄3&2/^s̄2&!~^s̄ 4&2^s̄2&2

2^s̄3&2/^s̄2&!215~2^s̄2&2!21a,

where we have definedKL , the ladder approximation, whic
is local, andK̃L(pW ,qW ,k)5r.

We now obtain an approximation for

~g,F̃ f !5„g,D̄0~12~2p!22~d21!K̃D̃0!21f …

for g and f even functions ofp̄, i.e., f (pW )5 f (2pW ) and k

5(k0 ,kY5sY ). For D̃0f we have

D̃0f ~ p̄!52~2p!d22E S̃~k02p0 ,pW !S̃~p0 ,pW !dp0f ~pW !

[G0~pW ,k! f ~pW !. ~2.1!

ReplacingK̃ by K̃L , expanding (12K̃LD̃0)21, evaluating
and resuming we find

~g,F̃ f !5E ḡ~pW !G0~pW ,k! f ~pW !dpW

1
r8

12r8I
XE ḡ~pW !G0~pW ,k!dpW C

3XE G0~qW ,k! f ~qW !dq̄C, ~2.2!

wherer85(2p)22(d21)r and I 5*G0(pW ,k)dpW .
Settingk05( ix,kW50W ) we now determine the behavior o
I as a function of the spectral parameterx or « where «
52m2x. These properties play an important role in t
analysis of the spectrum in Sec. III.

The general representation forS̃(p), the Fourier trans-
form of S, can be obtained by adapting the work of Re
@2–4# to show that

S̃~p0 ,pW !5
Z~pW !

coshv~pW !2cosp0
1E

coshm̄

` dh~a,pW !

a2cosp0
,

~2.3!

where m̄52(22«8)ln b, dh is a positive measure, an
Z(pW ),v(pW ) are real analytic inp̄;m̄ is lower bound for the
spectrum above one particle.v(pW ) is the one-particle disper
sion functionv(pW )>v(0W )5m. Explicitly,

v~pW !52 ln b2 ln^ s̄2&2b2d^s&^s̄2&21^s̄3&22b~d21!^s̄2&

1b^s̄2&2 (
i 51

d21

~12cospi !10~b2!,

Z~pY !b5~2b!2110~1!.

Using this representation we can explicitly perform thep0
integral in G0(pW ,k). Only the product of the one-particl
terms in Eq.~2.3! can give rise to a singularity inx as the
other terms are analytic inx up to at least2(32«8)ln b.
Keeping only these terms and denoting the result byI 1 , we
obtain

I 1516~2p!d22pe2x

3E Z~pW !2

tanhw~ p̄!

1

~e2x2e22w~pW !!~e2w~pW !2e2x!
dpW .0,

~2.4!

showing the analyticity inx for 0,Rex,2m. Furthermore
I 1 , as well asI, is a strictly increasing function ofx for 0
,x,2m. To see the behavior ofI 1 as x↑2m, we write x
52m2«, and using w(pW )5m1b, s̄2. p̄210(b2) we
have, for smallb,

I 152~2p!2d22~12e2«!21^s2&2. ~2.5!

III. SPECTRAL RESULTS

Recall that we are looking for zeros ofG̃(k) with k

5(k05 ix,kW50W ), (22«8)m,x,2m, where m;2 ln b
and it is convenient to writex52m2«, «.0. We consider
the dominant contributions to the terms in Eq.~1.5! for small
b. In what follows we will state spatial decay properties
M, L, andL8. These properties can be obtained by the
coupling of hyperplane method~see Refs.@4,9,10# and Ap-
pendix C!. For M̃ (k), k is the momentum conjugate to th
relative coordinatet5y2x. We denote the partial Fourie
transform in the space variables byˆ . We find

M̂ ~t0!5„M ~0,0!5G~0,0!2L~000!F~0000!L8~000!…

10~b!, t050;
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M̂ ~t0!5M ~0,e0!b10~b2!, M ~0,e0!51, ut0u51;

uM̂ ~t0!u<cb3ut0u, ut0u>2.

Thus, in the sumS
t0

e2 ik0t0M̂ (t0), the dominant term

comes fromut0u51 and isb coshx;e2«/b. For L(xx1x2),
where x105x20, we let d5ux102x20u and find uL(xx1x2)u
<cb3d, d>1 andL(xx1x2)5L(xxx)10(b), d50; similar
results held forL8(x3x4 ,y), wherex305x40. We explain the
d50 property ofL(xx1x2), referring to the definition in Eq
~1.4!. For b50, G and G are nonzero only for coinciden
points. To see that only coincident points enter intoF, we
considerF. For b50, F only has a diagonal part~which is
not local!. However, if the first two~or last two! points co-
incide then only for all coinciding points willF have a non-
zero value. This property carries over toF52F21. By a
subscript zero we denote the values of kernels at coincid
points. We denoteM (0,0)[M0 , G(00)[G0 , G(000)
5G0 , F(0000)[F0 , F(0000)5F0 , L(000)5L0 , and
L8(000)[L08 . Their values will be needed below. We find

F0^s̄
4&2^ s̄2&22^s̄3&2^ s̄ 2&2152F0

21,

M052^ s̄2&21^ s̄2&2~^s̄3&2~^s̄ 4&2^s̄2&2^s̄3&2^ s̄2&21!,

L05^ s̄2&21^ s̄3&~^s̄ 4&2^s̄2&22^ s̄3&2^s̄2&21!215L08 .

In what follows recall that we are assumingL0Þ0. Keeping
the dominant terms for the equation we can writeG̃(k0

5 ix,k̃50)[G̃(x)50, letting F̃„pW ,qW ,k5( ix,0W )…
[F̃(pW ,qW ,x) by abuse of notation, the approximate conditi

G̃~x!505M01
e2«

b
1~2p!22~d21!L0

2E F̃~pW ,qW ,x!dpW dqW .

Using Eq.~2.2! with g5 f 51 for the last integral we have
the approximate condition

G̃~x!505M01
e2«

b
1L0

2S 1

12r8I D , x52m2«.

~3.1!

In Eq. ~3.1! M0 may be negative, for example, for assdwith
a small odd part. However, for smallb the positive second
term will dominateM0 . Recalling the properties ofI, i.e.,
positive and strictly increasing inx for 0,x,2m, in Sec. II
we see that ifa,0 thenr8I ,0 and there will be no solu
tion. For a.0, andb sufficiently small, 12r8I 50 is ap-
proximately 12r8I 150 which by Eq.~2.5! has the approxi-
mate solution«052 ln(12a). We denote the solution of 1
2r8I 50 by «, and it is given by«15«010(b). Thus for
«,«1 , 12r8I is negative, and for« near «1 we have a
solution «b of Eq. ~3.1!. Thus we have a bound state wi
massmb , where

2m2mb5«b52 ln~12a!1O~b!.
nt

We note thatG̃ goes to infinity as«→«1 , which is a remnant
~in this approximation forG̃! of the infinity that G̃ must
assume between consecutive zeros, of massm, and of the
bound state mass@11#.

IV. CONCLUDING REMARKS

We have found a simple criterion for the existence o
bound state for smallb. The question arises as to the locatio
and number of bound states whenb is not small. Also there
is the analytic problem of whether or not 2m2mb admits an
analytic extension inb as is the case form1 ln b. The exis-
tence of weakly bound states in lattice gauge and gau
matter models~strongly bound states are present! is also an
open question, and the methods developed here open a
to treat these problems.

APPENDIX A: REPRESENTATION OF G

We develop a Fourier transform representation forG. For
x,yPZd, we write

G~x,y!5M ~x,y!1E L~xy1y2!d~y2
02y1

0!F~y1y2y3y4!

3d~y4
02y3

0!L8~y3y4y!dy1dy2dy3dy4 , ~A1!

where the kernels are translationally invariant. Introduce
variablet5y2x and the conjugate variablek and a bar no-
tation for functions of the relative coordinates.
We let

a5u22u1 , b5u12u3 , g5u32u2 ,

and defineF̄, L̄, andL̄8 by

F̄~a,b,g!5F~0,u22u15a,u32u15a1g,u42u1

5a1b1g!,

L̄~b,g!5L~0,u32u25g,u42u25b1g!, ~A2!

L̄~a,g!5L8~0,u22u15a,u32u25g!,

which are associated withF(u1u2u3u4), L(u2u3u4), and
L8(u1u2u3), respectively.

Introduce the variables~see@11#!

j85y22y1 , h85y42y3 , t85y12x, t95y2y4

which imply

y15t81x1 , y25j81y15j81t81x,

y35y42h85y2t82h8, y45y2t9.

We have the following symmetry properties:L(u2u3u4) is
invariant under u3↔u4 , L8(u1u2u3) is invariant under
u1↔u2 , and F(u1u2u3u4) is invariant underu1↔u2 and
u3↔u4 . Thus forF̄ we have

F̄~a,b,g!5F̄~2a,b,g1b!5F̄~a,2b,g1b!. ~A3!
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Now, since y32y25(y2t92h8)2(j81t81x)5y2x
2t82t9j82h8, and using the symmetry property@Eq.
~A3!#, we have

F~y1y2y3y4!5F̄~j8,h8,t2t82t92«82h8!

5F̄~2j8,h8,t2t82t9!,

L~xy1y2!5L̄~j8,t8!, L8~y3y4y!5L̄8~h8,t9!.

Thus for Eq.~A1! we have

Ḡ~t!5M̄ ~t!2E dj̄ dh̄8dt8dt9L̄~jW8,t8!

3F̄~2jW8,2hW 8,t2t82t9!L̄8~hW 8,t9!. ~A4!

We define the Fourier transform of a functionf (x) with a
conjugate variablep with a factore2 ipx and no factor of 2p.
Taking the Fourier transform of Eq.~A4! and dropping the
bars gives

G̃~k!5M̃ ~k!1~2p!22~d21!

3E dpW dqW L̃~pW ,k!F̃~pW ,qW ,k!L̃8~qW ,k!

which is our desired result@Eq. ~1.5!#.

APPENDIX B: BS EQUATION

Here we develop a BS equation forF. For F(x1x2x3x4),
x105x20 andx305x40. We have

F~x1x2x3x4!5D0~x1x2x3x4!

1E D0~x1x2y1y2!d~y102y20!K~y1y2y3y4!

3F~y3y4x3x4!d~y302y40!dy1dy2dy3dy4 .

~B1!

We emphasize that the kernels are only defined for eq
times in the first two and last two points. We introduce va
ables as in the even case~see@11#! by

j5x22x1 , h5x42x3 , t5x32x2 , j05h050.

Then using a bar for functions of the relative variables,
have

F̄~jW ,hW ,t!5D̄0~jW ,hW ,t!2E djW8dhW 8dt8dt9F̄~jW ,jW8,t8!

3K̄~2jW8,2hW 8,t2t82t9!D̄0~hW 8,hW ,t9!.

~B2!

where we have used thex1↔x2 andx3↔x4 symmetry prop-
erties ofF, D0 , andK. Denoting the conjugate variables
jW , hW , t by pW , qW , andk, respectively, and taking the Fourie
transform of Eq.~B2!, gives~dropping the bar!
al
-

e

F̃~pW ,qW ,k!5D̃0~pW ,qW ,k!1~2p!22~d21!E dpW 8dqW 8F̃~pW ,pW 8,k!

3K̃~pW 8,qW 8,k!D̃0~qW 8,pW ,k!, ~B3!

which is our desired result@Eq. ~1.7!#.

APPENDIX C: DECAY OF CORRELATIONS.
DECOUPLING OF THE HYPERPLANE METHOD

Here, by a sample calculation, we show how the dec
pling of the hyperplane method is used to obtain a decay
the CF introduced in Sec. I~see also Refs.@4,9#!. In particu-
lar we obtain the temporal falloff ofF and F. The same
method applies for spatial falloff and forL, L8, andM.

For the truncated function

Gu,h~x,y!5^u~x!h~y!&2^u~x!&^h~y!&, ~C1!

we introduce a duplicate variable representation depend
on the hyperplane decoupling complex parameters$wq%
wherewq replacesb for the bonds connecting thex05q and
x05q11 hyperplanes. The representation is, withx0<q
,y0 ,

Gu,h~x,y!$wq%)

5E @u~x!2u8~x!#@h~y!2h8~y!#

3expF (
q,z05q

wq„s~z!s~z1e0!1s8~z1e0!…G
3exp@S~s!1S~s8!#dm~s8!]dm~s8!/2D, ~C2!

whereD is the normalization factor. The primes inu8 andh8
mean functions of the duplicate variabless8. S(s) is the
action for the remaining bonds. By the polymer expans
~see Ref.@4#! Gu,h is jointly analytic in$wq% for small uwqu,
and equal to Eq.~C1! for all wq5b. From now on we sup-
press the$wq% from the notation ofGu,h in Eq. ~C2!. The
way in which decay is obtained is to show the vanishing
Gu,h or of wq derivatives atwq50. From the joint analytic-
ity in $wq% and Cauchy bounds for derivatives, the dec
follows.

As we will be calculatingwq derivatives ofF andF, it is
convenient to have a general formula. Expanding the
merator and denomiator of Eq.~C2! in powers ofwq , we
find

2Gf,c~x,y!

52 (
z05q

$Gf,s~x,z!Gs,c~z1e0 ,y!%wq50
wq

1 (
z05q,

$Gf,ss~uW !~x,y!Gss~uW !,c~z1e0 ,y!

1Gf,s^s~ ū&2s~ ū!^s&~x,z!Gs^s~uW !&2s~ ū!^s&,c~z1e0 ,y!

24Gf,s^s~uW !&Gs^s~uW !&,c~z1e0 ,y!%wq50wq
210~wq

3!,

~C3!

where Gf,ss(uW )(x,z)5^f(x)s(z)s(z1uW )&2^f(x)&^s(z)s(z
1uW )&, etc. For notational simplicity we write thewq

2 coeffi-
cient as, withk51, 2, and 3,
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(
z05q,k

Gf,fk
~x,z!Gfk ,c~z1e0 ,y!. ~C4!

Specializing to f5c5s, denoting ] r /]wq
r by ] r ,

] r /]wq
r uwq50 by ]0

r andGs,s by G, we have

]0
0G~x,y!50, ~C5a!

]0
1G~x,y!5 (

z05q
G~x,z!G~z1e0 ,y!uwq50 , ~C5b!

]0
0G~x,y!50, ~C5c!

]0
1G~x,y!5dx1e0 ,y ~C5d!

where we use]G5G]GG, which follows from GG521.
As the arguments used in obtaining]G will occur repeatedly
in the sequel, we give more detail. We have

]G~x,y!5(
u,n

G~x,u!]G~u,n!G~u,y!;

by the properties ofG, theu andv sums can be restricted b
u0<p andn0.p, which allows us to use Eq.~C5b!. Lifting
the restrictions and usingGG521 we obtain Eq.~C5d!.
Equations~C5a!, ~C5c!, and~C5d! imply the decay

uG~x,y!u<cU b

c1
Uuy02x0u

, uG~x,y!u<cbU b

c1
U2uy02x021u

.

We now consider

Ff,c~x,y!5Gf,c~x,y!1(
u,n

Gf,s~x,y!G~u,n!Gs,c~n,y!,

~C6!

and note that, iff~or c! is a constant or proportional tos,
then Ff,c50. Using Eqs.~C3! and ~C5c!, we see that
Ff,c(x,y)uwq50

, and for the first derivative we have

]Ff,c5]Gf,c1]Gf,sGGf,s]GGs,c1Gf,sG]Gs,c.
~C7!

Restricting sums and using Eq.~C3! gives

]0Ff,c~x,y!

5 (
z05q

FGf,s~x,z!Gs,c~z1e0 ,y!

1 (
u0 ,n0.q

Gf,s~x,z!G~z1e0 ,u!G~u,n!Gs,c~n,y!

1 (
u<q,n0.q

Gf,s~x,n!]G~u,n!Gs,c~n,y!

1 (
u0 ,n0<q

Gf,s~x,u!G~x,n!G~n,z!Gs,c~z1e0 ,y!uwq
50 .

~C8!

Thus we have the decay
uFf,c~x,y!u<cU b

c8
U2uy02x0u

.

For the second derivative, writing]2G5G]2GG12G]GG,
we have

]2Ff,c5]2Gf,c1]2Gf,sGs,c1Gf,sG]2GGGs,c

1Gf,sG]2Gs,c12Gf,sG]G]GGs,c

12]Gf,s]GGs,c12Gf,s]G]Gs,c

12Gf,sG]Gs,c . ~C9!

The reason for the splitting of]2G is that the first line of Eq.
~C9!, denoted byR, has a product structure of F’s, and th
remaining terms taken together vanish. In more detail, us
Eq. ~C3!,

R~x,y!uwq50
5 (

k,z05q
Gf,fk~x,z!Gfk,c

~z1e0 ,y!

1 (
u0.q

Gf,fk
~x,z!Gfk,s

~z1e0 ,u!G~u,n!

3Gs,c~n,y!1 (
u,u8,n,n8

Gf,s~x,n!G~u,u8!

3Gs,fk
~u8,z!Gfk,s

~z1e0,n!G~n,n8!Gs,c~n8,y!

1(
u,n

Gf,s~x,u!G~u,n!Gs,fk
~n,z!Gfk,c

3~z1e0 ,y!uwq50

5 (
k,z05q

Ff,fk
~x,z!Ffk ,c~z1e0 ,y!uwq50

.

~C10!

Only the k51 term contributes to Eq.~C10! and takingf
5ss(rY) andc5ss(rW8) we have

]0
2Fss~rW !,ss~rW8!~x,y!5 (

z05q,rW9
Fss~rW !,ss~rW9!~x,z!Fss~rW9!,ss~rW8!

3~z1e0 ,y!uwq50
, ~C11!

and recalling thatF with s’s is the same asF with s̄’s gives

]0
2Fs̄ s̄~rW !,s̄ s̄~rW8!~x,y!5 (

z05q,rW9
Fs̄ s̄~rW !,s̄ s̄~rW9!~x,z!

3Fs̄ s̄~rW9!s̄ s̄~rW8!~z1e0 ,y!wq50 .

~C12!

Letting F s̄ s̄(rW),s̄ s̄(rW8)(x,y) denote the negative inverse o
Fs̄ s̄(rW),s̄ s̄(rW8)(x,y) and using the properties ofFf,c(x,y),
namely,Ff,c(x,y)uwq50

, and]Ff,c(x,y)50 and Eq.~C12!
we obtain

]0
0F s̄ s̄~rW !,s̄ s̄~rW8!~x,y!50, ~C13a!
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]0F s̄ s̄~rW !,s̄ s̄~rW8!~x,y!50, ~C13b!

]0
2F s̄ s̄~rW !,s̄ s̄~rrW8!~x,y!5d rW,rW8dx1e0 ,y , ~C13c!

which implies the decay

uF s̄ s̄~rW !,s̄ s̄~rW8!~x,y!u<cb2U b

c1
U3uy02x021u

.

Spatial decay is obtained by using complex coupling para
eters associated with separating hyperplanes perpendicu
each of the component directions of the spatial coordina

Now we considerL, which we write as

Ls,ss~rY !~x,y!5 (
u,n,rY8

G~x,n!Gs̄,s̄ s̄~rY8!~u,n!F s̄ s̄~rY !,s̄ s̄~rY8!

3~n,y!, ~C14!

and note that inF we can replaces̄ by s and the same for the
first s̄ in Gs̄,s̄ s̄(rY8) , which for simplicity we denote byG3 .
For x0<q<y0 and atwq50, L(x,y)50, using Eqs.~C4!,
~C13a!, and ~C3! for G3 . However, to calculate derivative
and use the derivative formula@Eq. ~C3!# ^ s̄& and hences̄
cannot appear inf or c. Thus we replace thes̄ by s in
F s̄ s̄,s̄ s̄ , and use the decomposition

Gs,s̄ s̄~rY8!~u,n!5@Gs,ss~rY8!2Gs,s^s~rY8!&2Gs,^s&s~rY8!

1Gs,^s&^s~rY8!&#~u,n!,

where the last term is zero. We writeL5L1R, where

LrY~x,y!5 (
u,n,rY8

G~x,n!Gs,ss~rY8!~u,n!Fss~rY8!,ss~rY !~n,y!,

~C15!

RrY~x,y!5(
rY8

@^s~x1rY8!&Fss~ r̄ 8!,ss~ r̄ !~x,y!

1^s~x2rY8!&Fss~rY8!,ss~rY !~x2rY8,y!# ~C16!

For x0<q,y0 and]0
0L(x,y)50,

]0L~x,y!

5H (
u,n

z050,rY8

@dxzdz1e,uGs,ss~rY8!~u,n!

3Fss~rY8!,ss~ r̄ !~n,y!1G~x,u!Gs,s~u,z!

3Gs,ss~rY8!~z1e0 ,n!Fss~rY8!,ss~rY !~n,y!#

1 (
u,n,rY8

G~x,u!Gs,ss~rY8!~u,n!]Fss~rY8!,ss~ r̄ !

3~n,y!J U
wq

50. ~C17!

The first two terms in]0L sum to zero, and as]0F(n,y)
50 for n0<q we have]0L(x,y)50.
-
r to
s.

For the second derivative, suppressing indices, deno
Gs,ss(ū) , etc. by G3 , and recalling that]2G5G]2GG
12]G]G]G, we have

]2L5G]2GGG3F1G]2G3]F1GG3]2F12G]G]GG3F

12G]G3]F12]GG3]F12]G]G3F. ~C18!

At wq50 only the first three terms can give a nonzero co
tribution for x0,q,y0 . Using Eq.~C3!, the first two terms
of Eq. ~C18! are, forx0<q,y0 ,

(
u0<q,i ,z05q

n0.q,rY8

G~x,u!Gs,f i~u,z!Ff i ,ss~rY8!~z1e« ,n!Fss~rY8!,ss~ r̄ !

3~n,y!uwq50

and using the properties ofFf,c we can replacef i by f1
5ss(rY9) so that the first three terms of Eq.~C18! sum to
zero. Here we have used Eq.~C13c! for ]0

2F.
Turning to R of Eq. ~C16!, the two terms are equal, a

seen by using the symmetry propertyFss(rY8),ss(rY)(x,y)
5Fss(rY8),s( r̄ )s(x,y). As F(x,y)50 and]F(x,y)50 for x0

<q,y0 and wq50, we have]0
0RrY(x,y)50, ]0RrY(x,y)

50, and

]0
2RrY~x,y!5(

rY8
@^s~x1rY8!&]2Fss~rY8!,ss~rY !~x,y!

1^s~x2rY8!&]2Fss~rY8!,ss~rY !~x2rY8,y!#uwq

50,

and using Eq. ~C13c! gives ]0
2RrY(x,y)52^s(x

1rY)&dx1e0 ,y . Altogether we have, forx0<q,y0 ,

]0
2Ls,ss~rY !~x,y!

5H 2^s~x1rY !&dx1e0 ,y12 (
z05q,n r̄ 8

dx,z]Gs,ss~rY8!

3~z 1e0 ,n!Fss~rY8!,ss~rY !~n,y!

12 (
z05q,n8,rY8

dx,z]G~z1e0 ,n8!G~n8,u!

3Gs,ss~rY8!~u,n!Fss~rY8!,ss~ r̄ !~n,y!J U
wq

50,

so that]0
2Ls,ss(rY)(x,y)50 for x0,q,y0 . Thus we have

uLs,ss~rY !~x,y!u<H cubuc1u2uy02x0u, uy02x0u51,2

cubu4ubuc1u3uy02x022u, uy02x0u>3
.

]0
0L8, ]0L8, and]0

2L8 are treated in a similar manner.
We now consider M5G2LFL8. For x0<q,y0

we have ]0
0M (x,y)50. As ]M (x,y)5(]G2]LFL8

2L]FL82LF]L8)(x,y), we have, for x0<q,y0—and
upon taking into account the properties ofL, L8, andF, and
their first derivatives atwq50,
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]0M ~x,y!5]0G~x,y!5dx1e0 ,y .

For ]2M we have

]2M ~x,y!5@G]2GG2L]2FL812G]G]G2]2LFL8

2LF]2L822]L]FL822]LF]L822L]FL8#

3~x,y!. ~C19!

Using the properties ofL, L8, andF, and their first deriva-
tives atwq50, the last three terms of Eq.~C19! are zero for
x0<q,y0 . For wq50 the terms of the second line on
contribute for x05q or y0215q. Denoting the first two
terms of Eq.~C19! by ]2M (1)(x,y), taking x0<q,y0 , and
using Eq.~C3! for ]2G and Eq.~C11! for ]2F, we have
]0
2M ~x,y!5H (

j ,u,n
z05q

G~x,u!Gs,f j ~u,z!Gf j ,s~z1e0 ,n!G~n,y!

2 (
u,n,z05q,rY

G~x,u!Gs,ss~rY !~u,z!Gss~rY !,s

3~z1e0 ,n!G~n,y!J U
wq

50. ~C20!

The j 51 term cancels the second term, and thej 52,3 terms
can only contribute forx05q or q5y021. We conclude that
]0

2M (x,y)50 for x0,q,y021. Thus we have

uM ~x,y!u<H cubuc1u2uy02x0u, uy02x0u51,2

cubu4ubuc1u3uy02x0u, uy02x0u>3.
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